EP-RCCAs are available for purchase in all Westinghouse nuclear steam supply system (NSSS) core configurations (14x14, 15x15, 16x16, 17x17, and 17x17XL).

EP-RCCAs have performed well in Westinghouse NSSS plants, providing reliable operation over the expected service life.

Background

The enhanced performance - rod cluster control assembly (EP-RCCA) was developed to provide improved performance relative to previous control rod designs through the selection of materials and plating that enhance the product’s resistance to wear and irradiation. The materials were selected with the intent to perform exceptionally well with regard to corrosion and dimensional stability over the EP-RCCA design lifetime. The EP-RCCA design is the direct result of applying Westinghouse knowledge of the reactor system and functional relationships between RCCAs and the system as a whole, providing an integrated solution that is fully compatible with the reactor, and in particular, the internals and the fuel assemblies.

Westinghouse EP-RCCAs include three features for extended service performance:

- High-purity austenitic stainless-steel cladding
- Increased diametral clearance between the lower absorber and the cladding inside diameter
- Hard-chrome plating on the surface of the RCCA rodlets

The control of certain chemical impurities in EP-RCCA rodlets is important to the rodlet’s corrosion resistance and reduction in susceptibility to irradiation-assisted stress corrosion cracking (IASCC).

A small increase in the gap between the silver-indium-cadmium (Ag-In-Cd) absorber and the inside surface of the rodlet is incorporated in EP-RCCAs to accommodate tip swelling of the absorber, thus mitigating absorber-induced strain to the cladding.

EP-RCCA rodlets are manufactured with stainless-steel cladding that is hard-chrome plated on the outer surface to increase EP-RCCA wear resistance.
Description

The EP-RCCA consists of enhanced performance absorber rodlets, which are attached to a spider pack that consists of a brazed spider assembly, spider springs, spring retainer and spring tension bolt.

The rodlet absorber material is Ag-In-Cd alloy in the form of an extruded rod. A small diametral gap is provided between the absorber material and the cladding to accommodate relative thermal expansion, to allow for irradiation-induced swelling, and to facilitate fabrication. The lower section of the absorber rod is subjected to much higher neutron fluence in operation relative to the rest of the absorber material, so additional diametral clearance has been introduced in this region to accommodate the anticipated additional swelling.

The absorber rod cladding material is high-purity, partially cold-worked, Type 304 stainless steel tubing, which is resistant to IASCC. Industrial hard-chrome plating is applied to the surface of the tubing to enhance its wear resistance. The chrome plating is applied over the length of the rodlet that is in contact with the upper internals guide surfaces during operation.

Benefits

EP-RCCAs meet or exceed expected operational lifetimes, and customers have regularly experienced upwards of 15 years of reliable service prior to replacement. Customers have access to Westinghouse guidelines for core repositioning and axial repositioning of EP-RCCAs to further enhance EP-RCCA service life by better distributing localized fretting wear.

Westinghouse EP-RCCAs are designed and supported by our highly experienced engineering team, which is available to address customer operational needs and any emergent issues.

Experience

Westinghouse has been delivering the EP-RCCA design since 1987. The EP-RCCAs have been used by more than 25 customers worldwide in over 70 plants, and have a proven track record of excellent performance.

Over 3,000 EP-RCCAs of a wide variety of designs (14x14, 15x15, 16x16, and 17x17) are currently in operation. Westinghouse is actively monitoring current EP-RCCA operational performance data and is feeding the gained knowledge back into product improvements. In addition, we have inspected irradiated RCCAs and performed rod drop tests to demonstrate the continued high performance of our EP-RCCAs.